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We shall consider the rotor of a gyroscope as a heavy uniform fly-wheel
placed symmetrically on a slender weightless axis with ends fixed in the
inner ring. This mechanical system has, in general, an infinite number of
degrees of freedom, and for such a case the Liapunov method has not been
worked out; consequently, its stability
must be investigated through approxi-
mate methods. In many cases a system
with an infinite number of degrees of
freedom can be approximated by a model
with a finite number of degrees of
freedom having basic mechanical pro-
perties of the original system, but
being much easier to investigate. For
example, when Chetaev [1 ] studied the
stability of steady motions of a fly-
wheel fixed on a stationary, slender,
vertical shaft he approximated his
original system by a model with three
degrees of freedom. In this model the
fly-wheel moves only in a horizontal
plane, two coordinates determine the
center of gravity of the fly-wheel in

a fixed horizontal plane, the third Fig. 1.
coordinate is the rotation angle of

the fly-wheel.

The model of our problem is shown in Fig. 1.
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Following the conventional notation, i is the rotation angle of the
outer ring about its vertical axis zq, @ is the rotation angle of the
inner ring (casing) about the x-axis, abed is the rotor on the elastic
axis QILS2 which passes through the
center of gravity of the rotor L
(sideview), z01002 is the line in the
plane of the inner ring joining its
center (the fixed point 0) with the
points ¢, and Q, (points where the
rotor axis meets the inner ring).
When the rotor axis is not bent then
it coincides with the line Q,0Q, and
the point L coincides with the point
L0 whose distance from the fixed point
0 is {. The letter m denotes the plane

Fig., 2. through L0 perpendicular to 0Q;. We
assume that the center of gravity of
the rotor remains all the time in the

plane #, and its position is determined by the polar coordinates r = LOL
and ¢, where ¢ is the angle between the radius vector Ly,L and the axis
2. The axis 2° is the intersection of the w-plane and the plane of the
inner ring (the 2°-axis and the x-axis are parallel), The syz-coordinate
system is fixed in the inner ring, the x*y*z*-coordinate system is
parallel to the xyz-system and has its origin at the point L; the axes
%', y’ are in the plane of the rotor’s central cross-section, denoted by
A. The z’-axis is the line of intersection of the m-plane and the plane
of the rotor’s central cross-section and is assumed to be perpendicular
to LOL. The orientation of the rotor with respect to the x*y*:%*-system
is determined by the angles 0 (inclination with respect to the plane w),
and y (rotation angle of the rotor). Cosines of the angles between the

z%-, y*-, z*-, and z”-, y’-, z'-axes are given in the table.

The elastic properties of the
o ue ‘ 2* rotor’s axis are characterized
through the restoring force mu,r,
and the elastic moment uy28. where =»
v |cos ¢ cos 8sin @ cos 5' sin & is the mass of the rotor, p, and p,
are the positive coefficients of
z' ~cosq>sin6—sinq>sin6} cos & rigidity of the axis.

sin @ —cos @ ‘ 0

The coordinates of the point L in
the zyz-system are x = r cos ¢,
y=rsin ¢, z={, and in the x,y,z;-system are

Z1 =T COSQPcos P — rsin @ cos § sin P -+ ¢ sin § sin ¢

Y1 =rcos @ sin Y + 7 sin @ cos § cos P — § sin § cos P
zy=rsin O sing 4  cos §
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The force function of our mechanical system is

2U = — mpar? — mps8® — 2mg (r sin § sin ¢ 4 £ cos 0)

Let I be the moment of inertia of the outer ring with respect to the
z;-axis. Then the kinetic energy of the outer ring, of the casing, and
of the gyroscope equal, respectively

27 (B — 42
2T = 4,62 + Byjsin® 6 -+ Crif® cos? B
2T = m (2® + yo* + 22) +- A (Q 2 + Q%) + CQ,2

Here A;, B;, C; are the moments of inertia of the casing about the
z'-, y'-, 2’-axis, respectively, Q ., Qy', Q,-, are the z"-, y’-, 2’-
components of the rotor’'s instantaneous angular velocity vector

Q=9+ 6+i+¢+d
It can be easily shown that these components equal
Q. =—vysinfcosq+ §sing-+ &
Qy,=1]J(sin9sinq;cos&—{—cos()siné)+écos¢pcosé+q}sin6
Szz,z——-q;(sin § sin @ sin 8 — cos § cos 8) — § cos P sin 8 +pcosd4 g

The kinetic energy of the whole system can be expressed in the form

2T =m [r'2 + rzqi"’ + r’lp'2 (cos? - sin? p cos? §) — FL? sin 20 sin @ +
+ 7242 sin? @ - 22 (B2 4+ P2 sin® §) — 20 §'sin @ - 2%r P'sin B cos ¢ +

+-2r (r cos § — g sin § sin @) cp'q:'— 2r§q)‘6 cos ¢ —2rcos@(rsinflsin ¢+ Lcos9) 0'113 +
+ A192 4 [Bysin? § +- Cy cos? § + 1192+ 4 (Q,.% + Q%) + CQ_.2]

Since the variables ¢, 0, ¥, r, &, & are independent and holonomic,
we can write the equations of motion of our system in the Lagrange form

d 8T 8T U - .
T TR T (i=1,...,6) (1)

(1=, 2=0, gs=% qa=7r, =7, ¢gs=29)

Equations (1) permit three first integrals: the integral of conserva-
tion of energy

T —U = const (2)

and two cyclic integrals with respect to the coordinates i, X
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OT 0% = m [r2 (cos? ¢ + sin2 ¢ cos? ) — rf P sin 26 sin @+ g2 Psin2 g +
+Lrsin 6 cos@ -+ r (rcos§ —Zsin § sin @) p— r cos @ (r sin § sin @ 4 £ cos §) 6] -+ (3)
+(Bysin?Q 4 Cycost § + 1) 1]>.—— AQ ., sin § cos p + AL, (sin § sin @ cos 6 -+
€0s § sin 8) - -+ CQ,. (cos § cos & — sin § sin ¢ sin 6) = const
Q.. = const (4)

Equations (1) have stationary solutions
=00 r=r, Q=g b6=8, b=r=9=56=0, $=0, Q.=

if the constants 6,, ry, ¢, ), @ satisfy the conditions

B ) d 8
g T+U)=0,  H(T+U)=0, 59 (T+U)=0, ZZ(@T+U)=0

These conditions in our case have the form

— mQo? (rg? sin 200 sin? @g - 2ref cos 26 sin @o — L2 sin 204)
-+ (B1— C1) Q¢® sin 200 + 24902 (sin o cos g cos? Qo -+ hihg) —
— 2C0Qohy — 2mg (ro cos o sin @y — L sin Go) =0 (6)

2rgQq* (c0s? Qo -} sin? g cos? §o) — {Q? sin 20, sin Qg — 2170 — 2g Sin G sin @y =0

mrof2? (ro 8in® G sin 2q0 - £ sin 260 cos o) + AQ? (sin® Qo sin 2, —
— 2hg sin B¢ cos o cos &) -+ 2C0Q sin G4 cos Pg sin 8 -+ 2mgrg sin Gy cos =0

(AheQ + Cw) ks - mpeby =0

Here
hy = cos Go sin @y ¢os 8y — sin Gosind o, hs = sin Q¢ sin Qo cos 8 4 cos Qo sin 8¢
ha = sin Qg sin o 5in 8 — cos G cos Gy, hq = cos Baq sin @o sin 8o + sin §o cos By

¥We shall 1nvest1gat:,e t_he stapil_ity of the considered motion with re-
spect to 6, r, ¢, 5, 0, ¥, r, &, 8, Qz'_. The perturbed motion will be
denoted by

. 6 = 0o+ n1, r=ro-4 13, (P=CP0+»T]4,. 6=8+ns
0=ty Po= o + Eo, r=_E§s, (i>= &ss 8 =E&s, Q. =0+ &

The integrals of the perturbed motion corresponding to the integrals (2),
(3), (4) are, respectively, V;, V,, V;, where V; = . These integrals
written in powers of (i = 1, 3, 4, 5), {;(i=1, ..., 6) contain terms
of the first and of the second order of magnitude only (terms of higher
order are neglected).

It is easy to show, on the strength of (6), that the linear combina-
tion
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W=V1—2QQV3-—2C((9+%)V3
does not contain the linear terms

W= Fi{&, ..., B+ Fa{m % Na )+ Fa(m, M, M5 Be) -

The quadratic form Fy(£,;, ..., &) is positive-definite with respect
to all its variables, because its determinant and the determinant of
twice the kinetic energy expression, with values of coordinates as in
{(5), equal each other.

The functions F, and F; are also quadratic forms

Fa(ni. Mg My Ns) = [mroQe? (ro cos 28, sin® gg 4 2L sin 26, 5in @) —
— (mE? 4 A cos? @y 4 By — Cy) Q¢? cos 2 — AQ? (hy? — hg?) — CQotohs —
— mg (ro sin B sin @o -+ £ cos Bo)] Mi® - 2mQy? (ro sin 200 sin® go 4
-+ £ cos 28, sin @o) muns -+ [mreQe? (ry sin 26, sin 2¢p - 2 cos 260 cos @) -+
-+ AQqg? (sin 260 sin 2, — 2hy sin B¢ cos Qg cos 8 — 2hy cos g cOs Py c0s &) +
-+ 2C0Q0 cos G cos o sin 8y -+ 2mgro cos §o €08 Qo] Mng +
+ 2Q0 [AQo (hihe + hshe) + Cola] mms + m [p1 — Qo? (cos? @ +
-+ cos? §o5in2 @o)] ng? + mQe® (2ro sin? §o sin 29 -+ § sin 200 cos Qo) Mens +
~+ [mroQ0o? (ro sin? §o Cos 2q0 — /oL sin20¢sin @g) +
+ AQq? (sin® B cOs 20 -}- hyg 5in ¢ sin Qo cos do — sin? §o cos? @g cos® 8y) —
~ CwQp sin 8o sin o sin 8,] nd + 2 [AQ? sin §o Cos o (ke c0s 8 +
+ hysin 8s) — CwQ sin G c0s @y c0s So] NN -+ [mpta + ARe? (hg? — hg?) — CoQohg] 152

Fg (1, M, Ms, Ee) = 20 (hany -+ sin §o cos o sin deng - hans) Ee

If the function F, happens to be positive-definite with respect to
the variables 7y, 3. 7, Ng. then it is easy to prove that the form

V=W Rt

can be made positive-definite with respect to all the perturbed coordi-
nates and to all the velocities by selecting appropriate values for the
constant R. Consequently, the form V can be regarded as the Liapunov
function which solves the stability problem for solutions (5) [2]. In
this way the sufficient condition for stability of the investigated
motion with respect to 0, r, &, &, 0, ¢i r, ¢, 9, Qz', is reduced to four
conditions for positive-definiteness of the quadratic form Fo(n,, 73, 7,
n5) (the inequalities of Sylvester). In general, these four conditionms
are very complicated and involved. Let us consider certain special cases.

1. The rotation of the rotor in vertical position, 60 =0, ¢ =0,
@y = 0, 80 = 0, is stable with respect to 8, r, & and all the velocities
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if the following inequalities

— (M2 4 A + By — C1) Q¢ + CaQy — mgl >0 @
> Q% mps + CaQo— AQE >0
are satisfied.

2. The regular precession 8, # 0, rj = 0, ¢, = 0, 8, = 0 is stable
with respect to the same variables if the following inequalities

—_ (m§2 + A + Bl —_— C1) Qoy‘ cOs 260 + (C Qo"* mgC) COos 00 > 0 (8)
1 > Qo?, mps + CoQpcos G — AQe? cos2 8, >0 (9)

are satisfied.

The condition (8) 1s also the sufficient condition for stability of
regular precession when the rotor axis is assumed to be rigid[3]. If
the elastic properties of the rotor axis are taken into account, we need
two additional inequalities as shown in (9).

The sufficient conditions for the stability of the solution (5) ecan
be obtained from the Routh theorem.

The variable potential energy of the system has the form

_ [Py + P, (sin@singsind—cosGcosd)? P2
= - + < +

+ mp1r? - mped® 4 2mg (r sin g sin @ 4- L cos §)

H

where . .
P, =0T|3%, P, =aT/oy
n=mr?(cos® ¢ +-sin? @ cos? §) — mrf sin 26 sin @ -+ mZ%sin® § +-
-+ B;sin?§ 4 Cycos? § + 7 - Asin?Q cos? @ |- A (sin § sin ¢ cos & 4+ cos § sin 8)2

The investigated steady solution (5) is determined by the equations

on oIl oIl oIl
=% &=" =% =0 0
The solution (5) is stable with respect to 8, r, ¢, 8, 6, 7, ¢, 5, it
in position (10) the function # has a minimum, and with the restriction
that the constants of the cyclic integrals P,, P_ are not permitted to
vary., The conditions for a minimum of 7 are given by four inequalities
which are derived from the condition that in position (10) the principsal
diagonal minors of the determinant
l Il

(@ 7j=1,...,4)
a‘liij

(91==0, ga=r, ga=0q, ¢, =10)

{
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ought to be positive-definite.

2.

4.
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