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We shall consider the rotor of a gyroscope as a heavy uniform fly-wheel 
placed symmetrically on a slender weightless axis with ends fixed in the 
inner ring. This mechanical system has, in general, an infinite number of 
degrees of freedom, and for such a case the Liapunov method has not been 
worked out; consequently, its stability 
must be investigated through approxi- 
mate methods. In many cases a system 
with an infinite number of degrees of 
freedom can be approximated by a model 
with a finite number of degrees of 
freedom having basic mechanical pro- 
perties of the original system, but 
being much easier to investigate. For 
example, when Chetaev [ 1 1 studied the 
stability of steady motions of a fly- 
wheel fixed on a stationary, slender, 
vertical shaft he approximated his 
original system by a model with three 
degrees of freedom. In this model the 
fly-wheel moves only in a horizontal 
plane, two coordinates determine the 
center of gravity of the fly-wheel in 
a fixed horizontal plane, the third 
coordinate is the rotation angle of 
the fly- wheel. 

Fig. 1. 

The model of our problem is shown in Fig. 1. 
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Following the conventional notation, $ is the rotation angle of the 
outer ring about its vertical axis zl, 8 is the rotation angle of the 

inner ring (casing) about the x-axis, abed is the rotor on the elastic 
axis Q,LS, which passes through the 
center of gravity of the rotor L 

(sideview), zQIOQ, is the line in the 
plane of the inner ring joining its 
center (the fixed point 0) with the 
points Q1 and Q2 (points where the 
rotor axis meets the inner ring). 
When the rotor axis is not bent then 

I it coincides with the line Q10Q2 and 
the point L coincides with the point 
L, whose distance from the fixed point 
0 is 5. The letter R denotes the plane 

Fig. 2. through L, perpendicular to OQ1. We 
assume that the center of gravity of 
the rotor remains all the time in the 

plane II, and its position is determined by the polar coordinates r = L,L 

and qb. where $I is the angle between the radius vector L,L and the axis 
0 x . The axis 2 is the intersection of the n-plane and the plane of the 

inner ring (the &‘-axis and the r-axis are parallel), The ryz-coordinate 
system is fixed in the inner ring, the x*y*z*-coordinate system is 
parallel to the zyz-system and has its origin at the point L; the axes 
x’i y’. are in the plane of the rotor’s central cross-section, denoted by 
h. The x’-axis is the line of intersection of the n-plane and the plane 
of the rotor’s central cross-section and is assumed to be perpendicular 
to L,L. The orientation of the rotor with respect to the z*y*z*-system 
is determined by the angles 6 (inclination with respect to the plane n), 
and x (rotation angle of the rotor). Cosines of the angles between the 

x*-, y*-, z*-, and x’-, Y’-# Z.-axes are given in the table. 

The elastic properties of the 

.X* II* I 
2’ rotor’s axis are characterized 

a/ sin cp - co9 cp 0 
through the restoring force qlr, 

and the elastic moment a@, where w 

Y’ cos cp cos B sin rp cos 6 sin 6 is the mass of the rotor, p1 and ,u2 
are the positive coefficients of 

Z' - cos rp sin 8 - sin q sin 8 cos 6 rigidity of the axis. 

The coordinates of the point L in 
the zyz-system are x = r cos $. 

y = r sin q5, z = [, and in the xlyIzl-system are 

II = r CoS Cp CO6 11) - r sin q cos 0 sin I# + 5 sin 0 sin 9 
!A = r COS ‘p sin 9 + r sin cp cos 0 cos $ - 5 sin 0 cos 9 
ZI = r sin I3 sin q + 5 cos (j 
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The force function of our mechanical system is 

2U = - mpg2 - rnp.# - 2mg (r sin fl sin cp f 5 Cos 0) 

Let I be the moment of inertia of the outer ring with respect to the 
zl-axis. Then the kinetic energy of the outer ring, of the casing, and 
of the gyroscope equal, respectively 

Here AI, B,, C, are the moments of inertia of the casing about the 
XI-, Y’-# z’-axis, respectively, Qx#, ay*, fiZt~, are the x’-, y’-, z’- 
components of the rotor’s instantaneous angular velocity vector 

It can be easily shown that these components equal 

L1,, = - ;I sin 0 cos cp + (j sin cp + 6 

Q2,, = ;P (sin fl sin cp cos 6 + cos 0 sin 6) + fj cos cp cos 6 + (p sin 6 

Q,,=-~(sin~sincpsin6-cos~cos6) - fj’cosrpsin6fcp’cos S+ i 

The kinetic energy of the whole system can be expressed in the form 

2T = m [;a + r!@ + re$’ (cos2cp $ sin2 ip cos2 0) - P@$ sin 20 sin cp f 

+ G@ sin2 cp + 5” ( ij2 + $ sir? 0) - 2@‘B’sin q + 2cr-$‘sin 0 cos cp + 

+ 2r (r cos 0 - 5 sin ij sin cp) (p;r;- 2rgqB ‘cos ‘p - 2r co3 cp (r sin 0 ]sin 9 + 5 cos Q) $zi, + 

+ A& + [Bl sin2 ,Ij + Cl co9 fj + I] $ + A (QXP2 + QUe2) + CQ,,*] 

Since the variables $, 8, x, r, #, 6 are independent and holonomic, 
we can write the equations of motion of our system in the Lagrange form 

d dT dT XJ 
--_-=~ 
dt a& hi %i 

(i=1,..., 6) 

(91=$ q2 = 8, q3 = x, 44 = r, q5 = 'p, q6 = 6) 

(1) 

Equations (1) permit three first integrals: the integral of conserva- 
tion of energy 

T - U = const (2) 

and two csclic integrals with respect to the coordinates $, x 
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aT/ifl$ = m [r2$ (co9 cp f sin2 ‘p co9 8) - rc 4 sin 2t3 sin rp -j- 5” $ sin2 fj + 

+~;sinQcoscp+r(rcos~---sin esincp)cp-rcoscp(rsinflsincp+~cose) e]+ (3) 

+(B1 sin2 0 + C1 ~0s~ 8 + I) I+.-- AS,, sin e cos cp + AU, (sin 0 sin cp cos 6 + 

cos fj sin S) + + CQ,. (cos fj cos 6 - sin e sin cp sin 6) = cons t 

51,. = const (4) 

Equations (1) have stationary solutions 

8 = eo, r = ro, cp = cpo, 6 = 6,, fj=;=cp=i)=o, 4J = 610, Q,,= 0 (5) 

i.f the constants 8,. r,,, $, 4, w satisfy the conditions 

& (T + u) = 0, $T+u)=O, &JT +q=o, &T+u)= 0 

These conditions in our case have the form 

- mQo2 (b2 sin 2eo sin2 ‘p. + 2ro5 cos 2eo sin ‘p. - c2 sin zoo) + 

+ (&- Cl) Q2a2 sin 2eo + 2AQf (sin rjo cos fjo ~0~2 'p. + hIha) - 

- Xk&h - 2mg (r0 cos rjo sin ‘p. - E; sin Qo) = 0 (6) 

2r0Q02 (COS2 TO + sin2 90 cos2 eo) - <Qo2 sin 2fjo sin ‘p. - 2pLlr0 - 2g sin (j. sin q. = 0 

mr0Q02 (PO sina e. sin 2~0 + C sin ze, cos cpo) + AQcZ (sin2 flo sin 2qo - 

- 2hSSin ~OcoSqOcoS80)+ 2cb.dh sin &COsCpo dn6O+~~groSi11 flOCOSCpo= 0 

(Ah,QO+ Co)h,Qo+ "p28" = 0 

Here 
hl = cos e. sin cpo cos $ - sin go sina o, 
ha = sin e. sin ‘p. sin a0 - cos fjo cos Bo, 

h3 = sin e. sin cp0cos bo+ cos flo sin I!Q 
h4 = cos e. sin 'p0 sin $ + sin fjo cos B. 

We shall investigate the stability of the considered motion with re- 
spect to 9, r, +, 6, 8, 6, ;, 9, 8, Qz*! The perturbed motion will be 
denoted by 

e = e. + ql, r = rOf q8, cp = cpo-t.tl4, 6==80+)15 

i = %I> $= Qo + %2, ; = %a, i = %o* b= E5, Q,.= o+ Es 

The integrals of the perturbed motion corresponding to the integrals (2), 
(31, (4) are, respectively, VI, Yz, Vj, where Vg = c6. These integrals 
written in powers of qi(i = 1. 3, 4, 5), 5i(i = 1. . . . . 6) contain terms 
of the first and of the second order of magnitude only (terms of higher 
order are neglected). 

It is easy to show, on the strength of (6). that the linear combina- 
tion 
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does not contain the linear terms 

w = Fl (%I, - . . , F;s)+Fz(lllt "tls. q3r qs)+ FB(Tfl, q4, 33% Es)+ .* * 

The quadratic form FI([I. . l l s &) is positive-definite with respect 

to all its variables, because its determinant and the determinant of 

twice the kinetic enerff eXPreSSiOn, with values of coordinates as in 

(5), equal each other. 

The functions F, and F3 are also quadratic forms 

F8 @jr, QS, Q, Q) = fmr0Q0~ (~0 co.7 280 sin0 (p0 + 2{ sin 200 sin qb) - 

- (mt* + A co9 rpo -j- B1 - C,) it&,* cos 2fjo - ABoa (tat2 - haa) - CQooha - 

- mg (r0 sin B. sin cpo + 4 co.5 O0)] nla + 2mQoz (r0 sin 2eosina ‘po + 

+ I co.53 26, sin cpo) nlrm + [mr~SZo% (ru sin 200 sin 290 4 25 eos 200 cos cpof + 

+ AGo3 (sin 2fjo sin 291, - 2&r sin O. eos rpo cos 60 - 2hO cos 60 cos rpa 00s 60) + 

+ 2CoQ0cos B. coscp0 sin 80+ Pmgrocos 80coscpo] qlq4+ 

+ 24 IAQO (kha 4 M4 + h&l %tl~ 4 m IPI - Qo* (cd cpo i- 
+ cosB 00 sin3 cpo)] Y$ + mQOa f2r0 sin* 80 sin 290 + 6 sin 330 eos cpo) Qrlp + 

+ [mro90a (ro sin0 e. cos 2rp0 - “105 sin280sin cpo) + 

+ ABo* (sin0 e. cos 2ipo + h0 sin fjo sin cpo cos 60 - sin8 O0 co9 ~0 cost &) - 

- CoQ0 sin e. sin rpo sin a,] fica + 2 [AQo~ sin e. 150s & (b eos 60 + 

+ tt0 sin 60) - Co% sin OOCOS 90, cos ~O]Q~S + [mpa + Ai;Zoa @pa-W) - CuQ&l Q* 

F0 (ql, Q, TIS, !W = 2CQ0 (haul + sin 00 cos CPO sin &q4 + harm) E0 

If the function Fz happens to be positive-definite with respect to 

the variables ‘II, q3, qr. qs, then it is easy to prove that the form 

V= Wt_R& 

can be made positive-definite with respect to all the perturbed coordi- 

nates and to all the velocities by selecting appropriate values for the 

constant R. Consequently, the form Y can be regarded as the Liapunov 

function which solves the stability problem for solutions (5) [ 2 1. In 

this way the sufficient condition for stability,of the investigated 

motion with respect to 8, r, q$ 6, 8, 4, ;, 4, 6, fizz*, is reduced to four 

conditions for positive-definiteness of the quadratic form F2(r11, qj, qr, 

‘1~1 (the inequalities of Sylvester). In general, these four conditions 

are very complicated and involved. Let us consider certain special cases. 

1. The rotation of the rotor in vertical position, 8, = 0, y!rs = 0, 

$+ = O, 8, = 0. is stable with respect to 8, rr 6 and all the velocities 



864 V. V. Krenen tulo 

if the following inequalities 

-(m62+ A+B~-G~)5232+C~~~-mg~>O 

Pl> Qo2, rnpa + C(LR~ - AQos > 0 
(7) 

are satisfied. 

2. The regular precession 8, f 0, r0 = 0, $ = 0, 6, = 0 is stable 
with respect to the same variables if the following inequalities 

-(m62+ A+ B~--CC~)Q$COS~~~O+ (C S&J--mgQcos &,>O (8) 
p1> QoS. mp2 + COQQ cos 60 - AsZ$ co9 B. > 0 (9) 

are satisfied. 

The condition (8) is also the sufficient condition for stability of 
regular precession when the rotor axis is assumed to be rigid [ 3 1. If 
the elastic properties of the rotor axis are taken into account, we need 
two additional inequalities as shown in (9). 

The sufficient conditions for the stability of the solution (5) can 
be obtained from the Routh theorem. 

The variable potential energy of the system has the form 

II -_ fPJ, + Px (sin 9 sin 9, sin 6 - GOS 9 cos 8)12 

n 

Px2 + t 

C 
+ mplra + mpaa2 + 2mg (r sin 9 sin cp + 5 cos 9) 

where 
PJ, = aT/d$ P, = aT/l& 

n = mr2 (co@ ‘p + sina ‘p co@ (j) - rnrc sin 28 sin cp + mc2 sin2 fj + 

+ Br sin2 8 + Cl co@ ij + I + A six@ cos2 9 + A (sin 9 sin ip cos 8 + cos 9 sin 6)s 

The investigated steady solution (5) is determined by the equations 

an 
@ =o, an an an -- 

ar -0, &j=o, g =o 

The solution (5) is stable with respect to 6, r, 4, 6, 4, ;, 4. s. if 
in position (10) the function II has a minimum, and with the restriction 
that the constants of the cyclic integrals P,+, Px are not permitted to 
vary. The conditions for a minimum of R are given by four inequalities 
which are derived from the condition that in position (10) the principal 
diagonal minors of the determinant 

(i,j=I,...,4) 

(a = 0, 43= rr 93 = 93, 94 = 6) 



An application of Liapunov’s second method 865 

ought to be positive-definite. 
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